by
Summers Optical
A Division of EMS Acquisition, Inc.
PO Box 380 - 1560 Industry Road
Hatfield, PA 19440
Tel #: 215-412-8380 - Fax#: 215-412-8450
E-Mail: summers_optical@hotmail.com
Back to Main Menu | Back to Cement Table of Contents
by
Summers Optical
A Division of EMS Acquisition, Inc.
PO Box 380 - 1560 Industry Road
Hatfield, PA 19440
Tel #: 215-412-8380 - Fax#: 215-412-8450
E-Mail: summers_optical@hotmail.com
Most companies involved in manufacturing optical adhesives today have been doing so for some time now. Some for as long as 45 years. Their cements have been extensively tested by optical manufacturers and/or the military. When bond failure occurs it is more likely an incorrect choice of cement type, an anomaly in substrate preparation or incorrect interpretation of the manufacturers instructions than a question of the quality of the cement. The following will be descriptions of some of the common bond failures, their probable causes and suggestive corrective measures. |
Strain, Distortion and Bond Surface Breakage |
CAUSE: Most optical adhesives have a nominal shrinkage on cure of 5%. Add this to their strong adhesive quality and bending, slight distortion or even tearing of bonding surface can occur. As a doublet approaches hemispherical, perpendicular shrinkage forces act on the system. While the convex element is pulled into the concave, the shrinkage on the sides pulls outward. Thin elements, meniscus lenses and especially double concave lenses can be exceptionally prone to distortion. Ring configurations metal or glass as in early design ruby lasers are prone for the same reasons as described in the hemispherical lens situation. REMEDY: All the configurations described above have been bonded with unmodified cements by reducing the cure speed. By using a very slow cure speed, cross-linking is done gently and the adhesive is permitted to conform. It must be noted that optical adhesives are not good fillers. Combined surface match should be within eight fringes. |
Decentration During Pre-Cure |
CAUSE: An element shifting off optical axis during pre-cure or shortly after is not uncommon with the faster room temperature two-component cements or when high temperature oven cure adhesives are being used. As cross-linking can sometimes occur unevenly, shifts occur. The UV cements can fall victim as well, especially the very rapid curing varieties. REMEDY: |
Edge Pinch, Perimeter Separation, Reticulation |
CAUSE: Thin flats with 90 degree ground edges can show a distortion after cure around the perimeters of their bond surfaces. Beam splitter blocks and corner cubes can show this same distortion, however, it is usually along the line of the acute angle. This is pinching of the edges and is caused by cement shrinkage. Occasionally this shrinkage will cause bond separation, evidenced by mirror like reflection or interference rings around the perimeter. Reticulation is a term used to describe a "cobwebbing" radiating from the edges of the doublet inward. A look at this under magnification will show microscopic bubbles caused by air being drawn in during the curing because there was not enough or no cement around the bond perimeter as the cement contracted during cure. REMEDY: |
Uncured Leneses, Elongated cure Times, Bond Failure After Cure |
CAUSE: As the title implies, many bond failures after "cure" can be the result, in fact, of partially cured or uncured cement. This can occur with all cements, anaerobic, non-anaerobic, two-component as well as UV curing. Failures during environmental or mechanical testing can be caused by testing too soon or the cement taking too long to cure. The most common causes of curing problems with two-component cements are improper catalyst rations, incomplete mixing, reactive mixing containers and improper temperatures. Ultraviolet curing cements are sensitive to temperatures, transmission of substrate, wavelength and intensity of light source, and the distance of light source to substrate. REMEDY: If the lenses are to be cured in an oven, the technician should be advised that the oven should be up to temperature prior to inserting the lenses. He should also note how the temperature drops during loading and not start his curing time until the oven has returned to the original temperature. When especially thick or large lenses are being cured, some additional time must be allotted for the internal surfaces of the lenses to come up to temperature. Users of single component UV curing adhesives also prefer to store at lower temperatures so the previous admonition also applies to them. Often users of UV curing adhesives irradiate their lenses for longer than the instructions call. Although this has no effect on the cement, the working life of the lights is expended quicker. Spare light sources or a radiometer are suggested. The technician should always be aware of the recommended distance between substrate and light source. Before choosing a UV curing cement, the user must know the percent of transmission of the elements, primarily between 325nm and 375nm. If the elements do not transmit above 75% at these wavelengths, expect much longer cures. Above all, the user must be aware that full cure times quoted by most cement manufacturers reflect 90-95% cure. In the case of anaerobic and two-component adhesives this is because of the slight tackiness around the perimeter of the bond surface. Different cross-linking structure and end speed is the cause in UV curing cements. Hostile environmental testing and severe mechanical stresses should not be conducted on cemented doublets for at least 24-36 hours after the manufacturers stated full cure time. The test results are appreciably different when this rule is applied. |
Haze, Fog or Discoloration of Bond Layer |
CAUSE: Discoloration or haze that occurs during or immediately after curing is almost always a sign of contamination of the cement. There are many ways a cement can become contaminated on its way from the manufacturers package to the cemented lens. The catalyst can react with a metallic or polymeric mixing container or mixer. Cleaning an element with any volatile solvent in a room with high humidity can cause water condensate. Transferring mixed cement into a disposable syringe without thoroughly cleaning every component of the syringe can cause lubricant contamination. Although some manufacturers supply their cements in a dispenser package, the dispenser tip should always be inspected and kept clean. As previously mentioned, if the cement is stored under refrigeration, it should not be used until it is allowed to return to room temperature. REMEDY: |
Cement Wedge |
CAUSE: There are times when users of cements will attempt cementing and collimating at the same time. This might be by choice to save time or by necessity in aligning centers in a prism train. When such an exercise calls for having the bond surface out of the level horizontal plane, cement wedge occurs. In the time that it takes to adjust the piece and then collimate, the cement will flow to the low side of the plane causing the wedge. Wedge can also occur when attempting to bond two bond surfaces such as in a triplet or the hypotenuse of a corner cube while the cube is resting on one of its legs. REMEDY: |
Failures Under Moderate Stress or Weak Chemical Attack |
CAUSE: When sporadic bond failures occur during production runs that have been bonded by the same cement, it is logical to assume that since the cement is constant and each element is the variable, something is preventing the cement from bonding to particular elements. Most manufacturers are employing some type of mass cleaning process, pressure sprays, centrifical systems or ultrasonics but occasionally a few elements by their locations in the baths are incompletely cleaned. Some polishing compounds such as cerium oxide if not cleaned immediately can leave a very stubborn film if it hardens. Acrylic elements may not permit the use of solvents, therefore, thorough cleaning can be sporadic. REMEDY: |
The Cementing Department |
Upon reviewing what has been covered, it is
obvious that the cementing department must in some ways be a mini laboratory containing
the appropriate non-reactive mixing and measuring equipment when two-component cements are
used, proper light sources for UV curing adhesives, an assortment of solvents for cleaning
and even an ultrasonic cleaner. Since some lenses will have to be decemented, a hot plate
and containers for that procedure will be needed. These are in addition to a collimator,
blocking tools, oven, and a clean, humidity controlled environment. All of the tools and apparatus mentioned will be of no avail unless the cementing technicians are completely familiar with the physical, and optical properties of the elements to be bonded. They also must be aware of the environmental and mechanical demands that will be placed on the finished lens. Knowledge of the chemicals and compounds that come in contact with the elements during grinding and polishing as well as the production cleaning procedure will warn them of potential films or residual materials that could prevent adhesion. In conclusion, it is suggested that prior to any production run, witness pieces of the same materials or samples of lenses should be carefully bonded and tested to the specifications that the production items will be required. From this procedure a production protocol should be established and overseen by quality control. It should be emphasized to all personnel that even minor deviation from the protocol can have major effects on the finished optics. |